
during a filament activation? What are the causes of filament

eruption? What is the nature of the coronal environment

around the eruptive filament? Is there a difference between
filaments -- those activated in the presence of new magnetic

flux and those which are not? Are there two distinct classes

of precursor -- with and without active filaments?

Velocity and Magnetic Shear How are they related to each

other and to flare productivity? What is the role of the result-

ing electric currents? Is there a critical value of shear for

eruptive instability? What are the preflare characteristics of

the velocity field and how do they evolve?

Emerging Flux What are the necessary and sufficient con-

ditions for it to trigger a large flare? What is different in the

numerous flux emergences which produce no large flares?

What are typical velocities, magnetic field strengths and rates

of growth? Are they related to particle acceleration?

1.2 MAGNETOHYDRODYNAMIC

INSTABILIT 8 7 " 19329
E.R. Priest, P. Cargill, T.G. Forbes, A.W. Hood

and R.S. Steinolfson

1.2.1 Magnetic Reconnection

Our basic understanding of magnetic recoanection has

changed recently due to the beginning of detailed numerical
experiments on variousaspectsof the process (Priest 1984a

and 1984b). These have linked the two previous strands of

recormection theory, namely tearing mode instability and

Petschek-Sonnerup reconnection (as described below), and

have presented us with new surprises (§1.2.2, 1.2.3).

1.2.1.1 Linear Tearing Modes

A current sheet of width d is spontaneously unstable to

the linear tearing mode (Furth et al., 1963), which creates

long thin magnetic islands by recormection on a time-scale

(1.2.1)

where cd = dZ_ is the resistive diffusion time and rA = d/v A
is the AlDen time in terms of the AlDen speed (VA). For

the active-region corona with global length-scales (d) of typi-

cally 103-104 km, the tearing mode growth-time (1.2.1) is

days to weeks and is therefore much too long to explain a

flare although it may well be important for normal coronal

heating, (Heyvaerts and Priest 1985; Parker 1984).

Tearing may also take place in a sheared magnetic field
such as a flux tube. However, in solar coronal applications

it is important to incorporate the stabilising effect of pho-

tospheric line tying, since the footpoints of coronal magnetic
field lines are anchored in the dense photosphere. This has

led to suggestions that the resistive modes be completely

stable in a loop (Mok and Van Hoven 1982) or in an arcade

(Hood 1984a, Migliuolo and Cargill 1983) unless there is

a reversal in the axial (loop) or azimuthal (arcade) field com-

ponent.
An important new development is the discovery of a much

faster radiative tearing mode (Van Hoven et al., 1982,

Steinolfson 1983, 1984a, 1984b). Steinolfson and Van Hoven

have solved the normal incompressible resistive MHD equa-

tions but they have allowed the magnetic diffusivity to de-

pend on temperature (_/ = rioT-3/2), which introduces a

coupling to the energy equation

nk B dT
= V .(xB B.VT) - Rp2T-_ + /toT/(T)J2,(1.2.2 )V=l

and produces resistive field changes on energy-transport time
scales.

The predicted growth rate of linearly unstable modes is

shown in Figure 1.2.1. At coronal values of the magnetic

Reynolds number S (typically Ss = 10 m°'6for T = 106 K,
n = 1017 m -3, B = 100 G, a = 100 km) there are two dis-

tinct modes, namely the tearing mode and the radiative mode,

which is typically a hundred times faster. However, both

modes are modified significantly. Local cooling at the

X-points increases the magnetic diffusivity and so enhances

the reconnection for the tearing mode. In the radiative mode

a considerable amount of reconnection is present (Figure

1.2.2): the island width is typically 30% of that produced

by the tearing mode and the perturbed magnetic energy is

typically five times the perturbed thermal energy.
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Figure 1.2.1 Growth rate(0)) for radiative tearing
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a/v A) as a function of the magnetic Reynolds number
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Here the dimensionless wavenumber (ka) is 0.1, cor-

responding to a wavelength of 1Or[ times the shear
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values. (From Steinolfson and Van Hoven, 1984).

The inclusion of compressibility is found to be unimpor-

tant for solar coronal conditions. It inverts the tearing tem-

perature at very long wavelengths and increases the radiative

rate by typically a factor of five at very short wavelengths.
Steinolfson (1984) includes perpendicular thermal conduc-

tion which introduces spatial temperature oscillations nor-

mal to the tearing surface and on a scale comparable with

the width of the resistive tearing layer. Such thermal ripples

create velocity oscillations but don't affect the magnetic field.

Steinolfson (1983) derives analytical expressions for the

growth-rates in the constant-_b and long-wavelength approx-
imations. He finds that for S smaller than about 106 the modes

are generally stabilised. Also, he discusses the Joule heat-

ing instability which is present in the absence of radiation.

1.2.1.2 Petschek-Sonnerup Reconnection

The second main theme of reconnection theory has been

the fast nonlinear mode of steady Petschek-Sonnerup recon-

nection (Petschek 1964, Sonnerup 1970), which has been

reviewed many times (e.g., Priest 1984b, Vasyliunas 1975).
In this fast nonlinear state the current sheet bifurcates into

two pairs of slow shock waves, which exist because the in-

flow plasma speed exceeds the slow magnetoacoustic wave

speed. The shocks are standing in the flow and, as the plasma

and magnetic field lines pass through them, they have the

effect of transferring inflowing magnetic energy into the heat
and kinetic energy of hot fast jets.

In general one would expect the external boundary con-

ditions at the sources of the inflowing plasma to produce a
hybrid Petschek-Sonnerup regime. Particular forms of those

boundary conditions (namely free or fixed comer conditions)

may, however, produce the pure Petschek or Sonnerup ex-
tremes, respectively (Vasyliunas 1975). The difference be-
tween the two extremes is as follows. The Petschek mode

has a pure fast magnetoacoustic expansion in the inflow
regions upstream of the slow shocks, such that the flow con-

verges and the magnetic field strength decreases as the cen-

tral diffusion region is approached. By contrast, the inflow

region for the Sonnerup mode consists of a slow mode ex-

pansion with the flow diverging and the field strength in-
creasing. Although in Sonnerup's original analysis the slow

mode expansion fan was very thin and generated at a single

point in the inflow, Sonnerup reconnection here refers also

to the more general situation with a wide fan and generation

across a substantial part of the inflow region.
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Whenthereconnection develops locally from the tear-

ing of a sheared magnetic field, such as in the simulation

of the Kopp-Pneuman model for main phase reconnection

(§1.2.5), the nonlinear steady state is expected to be

Petschek-like (Figure 1.2.9). When the reconnection is driven
from outside, as in a simulation of emerging flux (§1.2.4),

the nonlinear state can be closer to the Sonnerup regime

(Figure 1.2.7).

Recent numerical experiments by Forbes and Biskamp

have produced two main surprises. They have demonstrated

that the tearing mode can develop in its nonlinear phase into

the fast Petschek-Sonnerup mode (§1.2.2). They have also

revealed some new regimes of fast nonlinear unsteady recon-

nection when the Petschek-Sonnerup mode breaks down or

goes unstable (§1.2.3).

1.2.2 Nonlinear Tearing

The nonlinear development of the tearing mode is far

from simple and not yet completely understood. Several path-

ways along which the instability may develop appear to be

possible, depending on the geometry and the parameter re-

gime, as outlined below.

1.2.2.1 Saturation

The first possibility is that the mode may saturate at an

extremely low amplitude, when the island width has only

grown equal to the resistive layer width (Rutherford 1973).

This benign outcome with an extremely small energy release

has been the most commonly expected development in labora-

tory devices. However, some recent calculations have been

performed by Steinolfson and Van Hoven at large values of

S (= 106) and at long wavelengths, conditions much more

appropriate to solar applications than previous attempts

(Steinolfson and Van Hoven 1983). At a wavelength of only

twice the shear length (a) the reconnection is indeed found

to slow down drastically, as in the Rutherford regime. But

at wavelengths of 20a the nonlinear reconnection rate is ten

times faster and the island grows enormously up to a width

of 2a (see also §1.2.3,2).

1.2.2.2 Mode Coupling

In a magnetic flux tube, surfaces at different radii are
unstable to modes with different values of m. m = 1

represents a simple kinking of the tube near the surface, with
the cross-section remaining circular. For higher m values
the cross-section becomes distorted: for instance, m = 2 per-

turbs the tube to a double-helix shape and m = 3 to a triple

helix. Normally, one expects several such modes to be

present and, when they grow to a large enough amplitude,
modes on neighbouring surfaces may couple to one another

(Waddell et al., 1978).

Aydemir and Barnes (1984) have performed some

numerical studies for a reversed field pinch which may be

of relevance to coronal structures. Such a toroidal labora-

tory device possesses a toroidal field component (Bs) and a

toroidal current (I s) which produces a poloidal field

component (B0) of the same order of magnitude.

Experimentally, an initially turbulent stateleads to a spon-
taneous reversal of the field near the axis followed by a long

quiescent phase. In this state the magnetic field is near to
a constant-a force-free field which, according to Taylor's

hypothesis (1974), minimises the magnetic energy subject
to toroidal-flux and magnetic-helicity conservation.

Heyvaerts and Priest (1984) have generalised the hypothe-
sis and applied it to the corona in order to deduce the coronal

heating and mini-flarings that are produced by tearing tur-
bulence.

Aydemir has studied the relaxation and sustenance of the

quiescent state using an incompressible 3D MHD code, with
S = 5 x 103. The torus is approximated by a periodic

cylinder of length 2_rR o, and so the variables are Fourier

expanded in the axial and azimuthal directions.

Starting from an unstable equilibrium the nonlinear evo-
lution is followed, with the dominant modes having m =

1 and n = 2 and 3. The system is driven in the sense that

the toroidal current is maintained against resistive diffusion

by an external source. For a 2D single helicity calculation,

in which only those modes with a given ratio m/n are re-
tained, a steady helical magnetic field is maintained in a lami-

nar manner. For a 3D multiple helicity calculation, when

two modes such as m/n = 1/2 and 1/3 are perturbed, many

other modes are generated by nonlinear coupling. Below a

critical current (such that om= 3) the field evolves to a steady

state, and above that value a quasi-steady state is reached
with fluctuations about a mean value maintained by a turbu-

lent dynamo for at least 1000 %. Also, for some currents
a bifurcation or frequency doubling is observed. Another im-

portant effect is that the magnetic flux surfaces break up and
the field lines become stochastic, which produces a rapid in-

crease in heat transport across the magnetic field.

1.2.2.3 Coalescence

In the linear regime the fastest growing tearing mode has

a very long wavelength (= $1/4a), and so in many cases only

one magnetic island will form. Sometimes, however, the

structure may be long enough for several islands to grow,

and then, in the nonlinear regime, neighbouring islands may
be attracted towards one another by an ideal mode known

as the coalescence instability (Finn and Kaw, 1977, Pritch-

ett and Wu, 1979). Being an ideal instability, unlike the tear-

ing mode, this mode grows extremely rapidly on Alfvenic
times.

The results of numerical simulation by Bhattacharjee,

Brunel and Tajima (1983) are shown in Figure 1.2.3b for

a plasma _ of 0.02 and a magnetic Reynolds number of 103.

They begin with two magnetic islands in equilibrium, which

are assumed to have been created by tearing (first frame).
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The two islands rapidly approach one another and create an
intense current sheet at the interface between them as the

coalescence instability saturates (second frame). Then the two

islands reconnect (third frame) and coalesce to form a single

island (fourth frame), which oscillates in response to its vio-

lent birth. Plasma density contours at the beginning of the

reconnecting phase (Figure 1.2.3b) at t = 1.6L/v A, where

L = 128 is the length of the system, suggest the presence

of two pairs of slow shocks propagating from the ends of
the central current sheet. Also, the large length of the cen-

tral current sheet and the high speed of approach of the two

islands suggest that this may represent a flux pile-up regime

(§1.2.3.1).

1.2.2.4 Petschek-Sonnerup Reconnection

When the outflow boundary conditions are free enough

and the inhibiting effect of the large tokamak axial field is

absent, it is possible for the tearing mode to evolve nonlin-

early into the fast steady state of Petschek-Sonnerup recon-
nection (Forbes and Priest, 1982, 1983a), as described in

Section 1.2.1.2. A new discovery by Forbes is that fast-mode

shocks may be present in the outflowing hot jets (Forbes and
Priest, 1983a, 1983b). These have the effect of degrading

the kinetic energy into heat and may be much more efficient

at accelerating fast particles than the much thicker slow

shocks. The steady Petschek-Sonnerup mode is possible when

the inflow speed (v) of plasma at large distances is less than

a maximum value, v < Vmax, which depends on the mag-

netic Reynolds number and also on the external boundary

conditions. For pure Petschek reconnection it is typically 0.01

vA, but for pure Sonnerup reconnection it is roughly the

Alfven speed (VA).

1.2.3 Nonlinear Reconnection Experiments

1.2.3.1 New Regimes of Fast Reconnection

Recent numerical experiments at high magnetic Reynolds

number by Forbes (Forbes and Priest, 1982, 1983a, 1983b)

and by Biskamp (1982a, 1982b, 1982c) have revealed two

new regimes of fast unsteady reconnection when the

Petschek-Sonnerup mode breaks down (Figure 1.2.4).

The flux pile-up regime occurs when the inflow of plasma

is so fast that (v > Vmax) is violated, as for instance when

reconnection is driven by an ideal instability such as coales-

cence or kinking. In this case the flux cannot reconnect as

fast as it is brought in and so it piles up outside the central

diffusion region and causes it to grow in length.

The impulsive bursty regime occurs when the length (L)
of the central diffusion region in either the Petschek-Sonnerup

or flux pile-up regime becomes too great

(1.2.3)

In this case the central sheet goes unstable to secondary tear-

ing (on the tearing mode time-scale) and coalescence (on the
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Figure 1.2.4 Regimes of Fast Reconnection: (a) Petschek-Sonnerup, (b) Flux Pile-up, (c) Impulsive Burst. (From

Priest, 1984).
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Alfven time-scale). The result is a more rapid energy release
in a series of bursts as the islands coalesce. This could be

extremely important for particle acceleration and the impul-

sive energy release that is often seen in flares.

1.2.3.2 Nonlinear Tearing at High S

Steinolfson and Van Hoven (1984b) have investigated nu-

merically the nonlinear evolution of the tearing mode at

values of Lundquist number (S), (normally equal to the mag-

netic Reynolds number) between 102 and 106 and dimension-

less wavenumber (u = ka) between 0.042 and 0.5. They

find that the growth slows considerably from the linear rate,

and at least 80% of the stored magnetic energy is converted

into thermal energy for the long wavelength modes with ka
< 0.5. Also the maximum electric fields are about three ord-

ers of magnitude smaller than the Dreicer field. However,

other features depend on the k-S parameter regime, as
follows.

The incompressible resistive MHD equations are solved

with temperature (T) and magnetic diffusivity (7) assumed
constant. The initial state is taken to be one isolated

wavelength of a linear oscillatory mode extending from the

centre (x=0) of one island to the adjacent X-point (Xmax)

and from the tearing surface (y =0) to a large distance (Ymax)

such that the perturbation is negligible and is decaying ex-
ponentially with y. Symmetry boundary conditions are ap-

plied at x = 0, x = Xmax, y = 0, and a non-uniform grid
is used in the y-direction with a concentration of grid-points

near y = 0 in order to resolve the resistive layer.

Figure 1.2.5 plots the reduction AE m = Erno - Em(t )

in the magnetic energy Em(t) stored in the shear layer, where

Emo = Era(O). Except for the constant ff solution, the energy
that has been released by the end of the computation is be-

tween 8 % and 27 %. It can also be seen that the longer the

wavelength (k = 21ra/a), the more magnetic energy is ulti-

mately converted, even though the conversion rate is slower
at first.

Figure 1.2.6 shows the formation near the X-point of a

secondary flow vortex in the opposite sense to the initial
linear vortex. When S and the wavelength are large enough

the secondary flow can create a second magnetic island near

the original X-point. Also, one finds intense current filaments

and electric fields near the X-points. At the same time for

long wavelengths (u = ka = 0.05) the width of the mag-

netic island grows to more than twice the initial shear layer

width (a) by the end of the computation, even though non-

linear saturation has not yet occurred.

1.2.4 Emerging Flux and Moving Satellite

Sunspots

1.2.4.1 Their Two Roles

Small regions of emerging flux and small satellite sun-

spots are often observed before flares. They signify the in-

i0-1 _ = , _ , I

10 -z- / S= 10 4 -10-1 :_
• / -o ;:;o5 e

,.,/ ,.,o +o
10-4 [ I I t 1 I 110-3

t I I ! I '

.0-'1- ,, / -,o-' g
o s. ,o" . e

l +
,++

10-4[ I I I I I 10-3

! I w I '

w

10.4 I I I I I i0. 3 n-
O I 2 3

TIME (T h ] xlO3

Figure 1.2.5 a) Nonlinear growth rate (p) and recon-

nected flux (A(1)) as functions of time in units of the

AIfven time (xh = a/V A) for the tearing instability of
one island at a Lundquist number (s) of 10 + and several

values of the dimensionless wavenumber (or = ka).

teraction of separate magnetic flux systems, in the first case

by means of a vertical motion and in the second case via a

horizontal motion, but in either case the effect is similar,

namely the pressing of one flux system against another and

the creation of a current sheet at the interface at some height h.
The first role of such flux evolution is to create small

flares when the current sheet reaches a critical height such
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trating the formation of a new magnetic island.

Dashed curves represent a clockwise flow (the modi-

fied linear vortex) and solid curves an anticlockwise

flow (the new vortex).

that the current density exceeds the threshold for the onset

of microturbulence. This has been estimated by solving the

energy balance equation within the sheet and so deducing

the resistivity from the temperature (Heyvaerts, Priest and

Rust 1977, Milne and Priest 1981).

The second role of emerging flux and moving satellites

is thought of as a trigger of large flares by initiating energy

release in a much more extensive overlying field. In partic-

ular, emerging flux may push up against a magnetic arcade

containing an active-region filament until it goes magneti-

cally unstable of its own accord (§1.2.6). Alternatively, it

may tear away some of the overlying field lines that are help-

ing to stabilise the arcade, or it may cause a large-scale recon-

nection by creating a small region of enhanced resistivity.

1.2.4.2 Numerical Experiment

Forbes (Forbes and Priest, 1984 submitted) has recently

conducted the first numerical experiment of emerging mag-

netic flux by solving the resistive MHD equations with a code

that is especially designed to treat shock waves well. The
initial state consists of a uniform horizontal magnetic field
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inanumericalboxwithfree-floatingconditionsonthetop
andsides.Newoppositelydirectedfluxis forcedinthrough
thebaseratherrapidlyataspeedofVA/8,andthemagnetic
Reynoldsnumberis2000.Theresultingmagneticandflow
patternsareshowninFigure1.2.7.Inthefirstthreepanels
thefluxemergesandreconnects,withinternalenergybeing
convertedtothekineticenergyoffastjetsofplasma.Att=4
theemergenceof newfluxthroughthebaseishalted,but
thefluxcontinuestoriseandentersahighlydynamicstage
asit losesquasi-equilibrium.Themagneticfieldlinespinch
offnearthebaseandformaplasmoid,whichultimatelydis-
appearsasthefieldreducestoapotentialstate.

Figure1.2.8apresentsatime-developmentofthemass
densitycontours,showingthedenseemergingfluxregion
and,especiallyatt = 3.29,thetworegionscompressedby
theshockpairsextendingfromthecentralcurrentsheet.This
sheetislongerthanexpectedforsteadyPetschek-Sonnerup

reconnection,indicatingthatreconnectionistakingplaceat
thistimeinafluxpile-upregime (§1.2.3.1). The top panel
of Figure 1.2.8b gives the heights of the neutral lines as func-

tions of time, with continuous and dashed curves referring

to X- and O-points, respectively. It can be seen that at t=4

a pair of such points is created and at t = 14 a pair is annihi-

lated. The lower panel indicates the electric field as a func-

tion of time at the X-points. Just before t =4 it shows the

onset of an impulsive bursty regime (§1.2.3.1), with the elec-

tric field having impulsive spikes in excess of the steady
Petschek value.

Since the electric field at the X-line is a direct measure

of the reconnection rate (i.e. the rate at which closed flux

in the emerging region is converted into open flux), the var-

iation of E o in Figure 1.2.8b gives an indication of the rate

at which magnetic energy is converted into kinetic and ther-

mal energy• During the impulsive bursty regime from t =

1.0
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Figure 1.2.7 Magnetic field lines and plasma flow vectors for an emerging flux numerical experiment. At the

top of each panel the time is indicated in units of the AIfven travel time across unit distance, and at the right
the maximum flow speed is given. (From Forbes and Priest, 1984).
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3.7 to 4.5 there is a rapid release of magnetic energy over

a period of about an Alfven scale-time, while before and af-

ter this period there is a slower release on the order of the

tearing-mode time-scale. That this sequence is suggestive of

the flare cycle of pre-flare, impulsive, and main phases is
possibly not a coincidence. Instead it seems more likely that

structures which incorporate both ideal MHD and resistive

instabilities (or, alternatively, non-equilibrium states) will
show fluctuations in the reconnection rate on both Alfven

and tearing-mode time scales.

1.2.4.3 Current-Driven Instabilities

At the workshop, J. Karpen presented an investigation

of the potential role of current-driven instabilities in produc-
ing brightenings and general preheating of the plasma in the

preflare coronal loops (Karpen and Boris, 1985, submitted).

This analytical work calculates the temporal evolution of the

ambient plasma characteristics in an emerging, expanding

flux tube with an axial magnetic field and electric current.

In lieu of focussing on a specific current-driven instability

(CDI), they constructed a "generic" CDI with a typical

on/off cycle and associated heating. The magnetic-field con-

figuration of an emerging flux tube is simulated by moving

two point sources of magnetic flux away from a common
origin with constant velocity. The density evolution is de-

rived by considering the mass influx required, but not neces-

sarily attained, for equilibrium in the expanding loop; thus,

a range of mass flow rates into the tube is allowed, the zero

mass flow yielding complete mass conservation. The tem-

perature evolution is determined by the energy equation,

which includes the effects of volumetric heating, intermit-

tent heating due to the CDI, radiation, thermal conduction,

and adiabatic cooling. The threshold criterion for the onset

of the CDI heating depends solely on the characteristics of

the beam current and ambient plasma, and operates under

the assumption of marginal stability (e.g., Manheimer and

Boris, 1977). Calculations were performed with fast and slow

footpoint-separation rates, and with high, intermediate, and

low mass-flow rates. The results show a variety of tempera-

ture behaviors: in particular, some cases include a single epi-

sode of excess CDI heating, lasting for tens of seconds, while

others manifest temperature oscillations throughout a large

fraction of the simulation period. These types of activity are

reminiscent of the patterns of preflare brightenings often ob-

served in the EUV, soft X-ray, and microwave regimes be-

fore flare onset (§1.3). The authors plan to use the NRL

Dynamic Flux Tube Model (cf. Mariska et al., 1982) to ob-
tain more detailed calculations of the effects of the CDI on

the dynamics and energetics in the expanding loop.

1.2.5 Main Phase Reconnection in Two-

ribbon Flares

The overall magnetic behaviour during a large two-ribbon

event is believed to be as follows. Throughout the preflare

phase a large flux tube (containing an active-region fdament)

and its overlying magnetic arcade rise slowly. The rise may

be caused by an ideal eruptive instability when the twist in

the flux tube or its height become too great (Hood and Priest,

1980, Hood 1984a). Alternatively, it may be due to mag-

netic nonequilibrium when the equilibrium of a curved tube
ceases to exist (Parker 1979, Browning and Priest 1975,

§1.2.6.1) or it may be triggered by emerging flux.

The onset of the flare itself coincides with the start of

the much more rapid eruption of the filament. It probably

occurs because the magnetic field lines of the stretched out

arcade start to reconnect below the filament (Priest 1981a,

1981b). The linear tearing of the field lines leads on to the

fast Petschek and impulsive bursty regimes of reconnection,

as described below (Figure 1.2.9). During the main phase
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Figure 1.2.9 Magnetic field lines and flow velocity
vectors at a quarter of the grid points during the

Petschek phase of quasi-steady line-tied reconnection.

(Forbes and Priest, 1984).
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there,connectionis thought to continue and create hot 'post'-

flare loops with Hot ribbons at their footpoints as the field
closes down. The source of the immense mass of plasma that

is subsequently seen to be falling down along cool 'post'-

flare loops below the hot loops is an upflow of plasma from

the chromosphere along the open field lines before they

reconnect (Kopp and Pneuman 1976). The cause of the up-

flow may well be evaporation driven by thermal conduction

or by fast particles that are accelerated at the shocks asso-
ciated with the reconnection process. Furthermore, it has now

been shown that these slow magnetoacoustic shocks can heat

the upflowing plasma to the temperatures observed in the

hot loops of up to twenty million degrees (Cargill and Priest

1982).

A numerical experiment on the line-tied reconnection that

takes place below the erupting filament has been undertaken

by Forbes (1982, 1983a, 1983b). He starts with open,

stretched out and oppositely directed magnetic field lines in

equilibrium and solves the 2D resistive MHD equations for

the subsequent development of the right-hand half of the
structure. The base of the numerical box is line-tied. Its left-

hand edge is an axis of symmetry, and free-floating condi-

tions are imposed on the other two sides.

First of all, the sheet tears near the base and the mag-

netic field lines start to close down with the X-type neutral

point rising and a plasmoid being ejected from the top of

the box. In the nonlinear development, reconnection enters

a quasi-steady Petschek regime, which is shown in detail in

Figure 1.2.9. The decrease of magnetic field strength and

convergence of the flow vectors as the reconnection point

is approached are characteristic of a fast-mode expansion as-

sociated with a Petschek-type of regime (§1.2.1.2). Also,

the fast shock in the downflowing jet may be important for

particle acceleration. In the subsequent development the sheet

thins and the Petschek mode goes unstable, with the recon-

nection entering an impulsive bursty regime. Secondary tear-

ing creates a new pair of O and X points, and reconnection

at the upper X dominates so that the O is moved down and

coalesces with the lower X. Meanwhile, a new pair appears

and the process of creation and annihilation of neutral point

pairs is repeated. The energy release in this process is faster

than the steady Petschek rate, and it occurs in the impulsive

manner that is observed in many flares.

1.2.6 Magnetic Instability Responsible for

Filament Eruption in Two-Ribbon
Flares

1.2.6.1 Loop Configuration

Many people have modelled the preflare magnetic con-

figuration by a single loop and have investigated its stabil-

ity, with applications to both small simple-loop flares and •

large two-ribbon flares in mind. Many such stability anal-

yses have been undertaken neglecting for simplicity the

curvature of the loop and regarding it as a straight cylinder

(e.g., Raadu 1972, Hood and Priest 1979, Einaudi and Van

Hoven 1981). Line tying of the ends of the loop in the dense

photosphere is an important stabilising effect which makes

the perturbation (0 vanish there. It keeps the loop stable until
the amount of twist in the loop exceeds a critical value, typi-

cally 2_r or more, depending on the particular equilibrium.

The most complete analyses of this type have so far been

carried out by Hood and Priest (1981) and Einaudi and Van

Hoven (1983). The perturbed equation of motion is solved

numerically to give the threshold twist for instability.

The effect of curvature on the equilibrium of an isolated

slender coronal loop has also been considered in a simple

model (Parker 1979, Browning and Priest 1985) which

balances tension and buoyancy. One finds that the variation

of the height H of the loop summit with the footpoint sepa-

ration W is given by

W = eH/A _1, (1.2.4)
tan 2 -_

where A is the gravitational scale height. Thus, as the foot-

points move apart (W increases) the summit rises (H in-

creases) until, as W approaches _rA, the loop summit floats

up indefinitely. For large footpoint separations there is no

equilibrium at all. Including an external magnetic field low-

ers the buoyancy force and therefore the summit height, but

it doesn't change the critical footpoint separation. Including

a twist in the loop lowers the magnetic tension and so in-

creases the summit height. It also lowers the critical width

and changes its nature to a nonequilibrium point.

1.2.6.2 Arcade Configuration

For two-ribbon flares the preflare magnetic configura-

tion has been modelled more accurately by a coronal arcade.

In particular, the effect of line tying has been included in
models of force-free arcades (Migliuolo and Cargill 1983,

Hood and Priest 1980, Birn and Schindler 1981, Ray and

Van Hoven 1982, Hood 1983a, Cargill et al., 1984). The

original analysis (Hood and Priest 1981) considered various
classes of ideal perturbations and found that a simple arcade

with its magnetic axis below the photosphere is always stable

to those classes. It also appears to be stable to resistive modes

usually (Hood 1984, Migliuolo and Cargill 1983). However,

arcades with their magnetic axis a distance d above the pho-

tosphere are more interesting, since they are more likely to

represent configurations within which an active-region (or

plage) filament can form (Hood and Priest 1979). Such fila-

ments are quite different from the large quiescent filaments

and form along flux tubes. They are indicators of a highly

sheared field and very often erupt before two-ribbon flares,

slowly at first and then much more rapidly at flare onset.

This type of coronal arcade (whose cross-section contains

a magnetic island) is found to become unstable when either

the height of the magnetic axis (and therefore of the filament),
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or theamountoftwistbecometoogreat(HoodandPriest
1981).Thissuggeststhattheeruptionofthearcademaybe
causedbyaspontaneous eruptive instability when the fila-
ment height or the magnetic shear become too great.

Recently, attention has been focussed on magnetohydro-

static arcades with a force balance between the Lorentz force,

a pressure gradient and gravity. For a two-dimensional

isothermal arcade in which the variables are independent of

the direction z along the arcade, the magnetic field compo-

nents can be found, especially in the limit as H approaches
infinity such that the gravitational force is negligible (Low

1979, Heyvaerts etaL, 1982, Priest and Milne 1980, Zweibel

and Hundhausen 1982, Melville et aL, 1983, 1984).

Having obtained the equilibria for magnetostatic arcades,
it is important to analyse their stability, since an arcade must

be stable if it is to store magnetic energy prior to flares. On

the other hand, it is also necessary that this energy can be

released by an instability when some critical threshold is

reached. The stability of arcades can be studied either by

the energy method or by solving the equations of motion.

Using the energy method Schindler et aL (1983) and Hood

(1984a, 1984b) independently obtained a sufficient condi-

tion for stability. For flee-flow boundary conditions (see

below) this condition also becomes necessary when there is

no axial field (Bz = 0).

The strong stabilising influence of the dense photosphere,

known as line-tying, has been modelled in two different

ways, either by setting the perturbation (_1) perpendicular
to the magnetic field at the photospheric footpoints equal to

zero or by making the total perturbation (__k+ _|) vanish
there. The physical argument is that the high density (and

low temperature) does not allow the photosphere to move

in response to disturbances that propagate from the corona.

For example, assuming the ratio of photospheric to coronal

wave speed to be 103, 99.6% of the energy of a non-resonant

MHD wave propagating from the corona should be reflected

back and only 0.4% transmitted. It is generally agreed that

line tying makes perturbations that are perpendicular to the

magnetic field vanish at the photosphere for perfect reflec-

tion. However, the condition on perturbations parallel to the

magnetic field is more controversial (Cargill et aL, 1985 sub-

mitted). The two main choices are to regard the ends as be-

ing rigid and set_ = 0 (e.g., Hood and Priest 1979) or to

allow free flow through the ends (Vo {_e-Y/II} = 0 for an
isothermal plasma). Many results in the literature differ be-

cause of the choice of this parallel boundary condition as well
as the choice of equilibrium.

By solving the equations of motion with free-flow bound-

ary conditions parallel to the magnetic field Migliuolo et al.

(1984), have demonstrated that arcades with Bz = 0 are un-

stable to interchange modes with very short wavelength (kz)
along the arcade. This instability may be important for the

smaU-scale structure of the corona rather than for global flare

instability. They also showed that, if Bz is non-zero, the ar-

cade becomes unstable when the pressure gradient is large

enough, a result which may account for the second stage of

a double impulsive flare, in which the second part of the flare

occurs after plasma has been evaporated up to the corona
by the first part.

More recently, the work has been extended to compare

the stability thresholds that result from free-flow and rigid

end conditions (Cargill et al., 1985, submitted). For cylin-

drically symmetric equilibria the presence of a rigid bound-

ary gives rise to substantial differences in the stability

thresholds. Equilibria with Bz = 0 may be either stable or
unstable, depending upon the exact details of the equilibrium

and the ratio of the specific heats (3,). Inclusion of shear (Bz)
is stabilising, and for the equilibria considered a small amount

of shear is sufficient to stabilise all the equilibria. Physically,

the rigid conditions do not permit incompressible modes, and

so there is an increase in the potential energy due to com-

pression of the plasma. Clearly, the difference in the results

from two sets of boundary conditions makes it important to

understand the real nature of line tying, and to model it ade-

quately (Cargill et al., 1985, submitted).

Hood (1983b) has considered the arcade equilibrium

A= Aocos( x sinY) (1.2.5)
\4H y1/2

where

Y = 2_H exp (-1/2 y/H) (1.2.6)

and (2BH) 2 is the plasma beta. This is a special case of the
class considered by Zweibel and Hundhausen (1982), and

the field lines are shown in Figure 1.2.10a. As the base pres-

sure (and therefore B) increases, so the magnetic field lines

bow outwards, and eventually for 2BH > 1.15 a magnetic

island appears (Figure 1.2. lOb). When the pressure is so
large that 2BH > _r the upper field lines become detached

from the photosphere and the configuration ceases to be phys-

ically realistic. When the magnetic island is present, Zweibel
(1981) has shown that such fields tend to be unstable. Hood

(1983b) has extended her analysis to include the effect of

magnetic tension, which makes the field stable for small B.

It should be stressed that stability analyses of the above

type may be used to estimate the amount of magnetic en-
ergy that may be stored in the corona in the stable state. The

equilibria that are considered are certainly not accurate
representations of active-region fields (see §1.3), but they

do typify their expected properties.

1.2.6.3 Prominence Models

Recently, Malherbe (Malherbe and Priest 1983, Malherbe

et al., 1983) set up some new current sheet models for quies-

cent prominences using complex variable theory. Figure

1.2. l la,b shows two models of the Kippenhahn-Schluter

type, while Figures 1.2.1 lc,d indicate some of the Kuperus-
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4. The stability analyses imply that an arcade can become

unstable when either its height or twist or plasma pres-

surebee°met°°_l_a_ 7" 19330

1.3 PREFLARE MAGNETIC AND VELOC-

ITY FIELDS

M.J. Hagyard, V. Gaizauskas, G.A. Chapman, A.C.

deLoach, G.A. Gary, H.P. Jones, J.T. Karpen, M.-J.

Martres, J.G. Porter, B. Schmieder, J.B. Smith, Jr., and
J. Toomre

A description of the structure, dynamics and energetics
of the preflare state depends on our ability to characterize

the magnetic and velocity fields of the preflare active region.

In this SMM Workshop, we fortunately had at our disposal
many sets of coordinated SMM and ground-based observa-

tions of magnetic and velocity fields from the photosphere,
chromosphere, transition region and corona to aid in this

characterization. At the outset we decided that several aspects
of these fields are of special interest to the preflare state:

configurations in the magnetic and velocity fields that seem

peculiar to flaring active regions; the existence of shears (in

both the magnetic and velocity fields); the occurrence of

emerging flux. Some questions naturally arise concerning

these topics. Do flares occur in active regions where the mag-

netic field is force-free (currents are field-aligned), non-force-

free or both? If it is force-free, can it he specified by a

constant-alpha? [Alpha is the ratio between current density
and field strength]. Is magnetic shear correlated with the oc-

currence of flares and, if so, is there a critical value of this

shear? What is the role of the resulting electric currents?

What are the preflare characteristics of the velocity field and

how do they evolve? What is the spatial and physical corre-

lation between sheared velocity and magnetic fields? What

are the conditions necessary for emerging flux to trigger a

flare? What growth rates of flux are significant? How does
the flux emerge into the corona?

Although we did not find answers to all these questions,

we made significant progress in many areas. We found that

the preflare active region is very dynamic, exhibiting recur-

rent mass surges and intermittent heating events at many sites.

In one case, that of an active region not particularly produc-

tive of large flares, the structure of the magnetic field was

best represented by a nonlinear force-free field; for a par-
ticularly flare-productive region, there were indications that,

subject to certain restrictions on the boundary conditions,

the field was non-force-free, exhibiting a measurable Lorent7

force. We also found that both the magnetic and velocity

fields are sheared in flaring regions; the shear of the mag-
netic field attained maximum values at the sites of flare on-

set, whereas the velocity field sometimes exhibited an unusual

vortical structure at these sites. These sheared magnetic fields

produced persistent, large-scale concentrations of electric

currents at the flare sites; numerical values for the magni-

tudes of these currents provided input to models describing

preflare brightenings based on joule heating or current-driven

instabilities. Finally, we found the role of emerging flux in

flares to be ambivalent, providing an obvious triggering of

some classes of flare while having no role in the flare process
in others.

In describing these various results the material has been

arranged as follows. We begin with a characterization of the

preflare magnetic field, using theoretical models of force-

free fields together with observed field structure to deter-

mine the general morphology. We then present direct ob-

servational evidence for sheared magnetic fields. The role

of this magnetic shear in the flare process is considered within

the context of an MHD model that describes the buildup of

magnetic energy, and the concept of a critical value of shear

is explored. The related subject of electric currents in the

preflare state is discussed next, with emphasis on new in-

sights provided by direct calculations of the vertical electric

current density from vector magnetograph data and on the

role of these currents in producing preflare brightenings.

Next we discuss results from our investigations concerning

velocity fields in flaring active regions, describing observa-

tions and analyses of preflare ejecta, sheared velocities, and

vortical motions near flaring sites. This is followed by a crit-

ical review of prevalent concepts concerning the association

of flux emergence with flares.

1.3.1 General Morphology of the Preflare

Magnetic Field

It is generally accepted that magnetic fields are the ulti-

mate source of the energy released in a flare (e.g., Svestka,

1976) and that this energy is stored in an active region prior

to the flare as a result of the stressing of these fields into

non-potential configurations We have accumulated observa-

tional evidence for such stressed fields, both on large and

small scales, and studied the stressing processes which result
in the eruption of a flare. We first discuss our studies of the

general morphology of the preflare magnetic field.

A. Gary endeavored to classify the non-potential character

of magnetic fields in active regions assuming that the fields

are force-free, i.e., that the following relation is valid:

V× B = #o J = aB. (1.3.1)

Several active regions observed during SMM were modeled
_:.

usmg the force-free formulation developed by Nakagawa and
Raadu (1972), who assumed that the parameter ot is spatially

invariant. One of these regions, AR2684, was 0f particular

interest since it was observed by instruments on a Lockheed

rocket flight at 20:30 UT on September 23, 1980, as well

as by SMM and ground-based instruments. Although the flare

activity in the region was relatively minor, several C- and

M-class flares occurred on the 23rd and 24th, the largest be-

ing a 1B/M1 event at 07:28 UT on the 24th.
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